

What’s Wrong with Spreadsheets –
and How To Fix them with Analytica

Draft 14 July, 2004

Max Henrion, PhD

Lumina Decision Systems, Inc

26010 Highland Way
Los Gatos, CA 95033, USA

Copyright 2004, Lumina Decision Systems, Inc

www.lumina.com

Comments are welcome to Henrion@lumina.com
Please check www.lumina.com for a final version before citing or quoting.

http://www.lumina.com/
mailto:Henrion@lumina.com
http://www.lumina.com/

What’s wrong with spreadsheets – and how to fix them

1

The original “killer app”
The twenty-fifth anniversary of the first
spreadsheet is almost upon us: The first
spreadsheet, VisiCalc, was developed by Dan
Bricklin and Bob Frankston, and released in May
1979 for the Apple II. Now that there are many
tens of millions of spreadsheet users,
spreadsheets as a category rarely make
headlines, it is easy to forget that the
spreadsheet was the original “killer app”: In the
early 1980s, the spreadsheet was the vehicle on
which the personal computer first rode to fame
and fortune. Before spreadsheets, the personal
computer was mostly seen as a complicated toy
for hobbyists. Spreadsheets, by offering
immediate practical value to businesses,
convinced millions to buy their first personal
computer.

Following VisiCalc, Mitch Kapor developed
Lotus 123 and released it for the IBM PC in
1983. Lotus 123 rapidly became the dominant
spreadsheet for the rest of the 1980s. Microsoft
first released Excel as one of the first
applications on the new Macintosh in 1984-5.
Excel became Microsoft’s flagship product on
Windows with the release of Windows 3.0 in
1989. Since then it has achieved near complete
domination of the category.

The application takes its name from the
accountants’ spreadsheet — a sheet of paper
with ruled rows and columns, in use for
hundreds of years. Part of its immediate success
lay in its user-interface metaphor — the
electronic grid that looked seductively familiar to
those accustomed to paper spreadsheets — the
layout with row labels down the left-hand column
and columns of numbers with totals at the
bottom. The ability of the computer spreadsheet
to recalculate results as you change input
numbers seemed almost miraculous to those
accustomed to using a hand – or head –
calculator. Even for those few who had been
programming computers to perform such
calculations, the way in which the spreadsheet
maintains the dependencies and automatically
recalculate formulas was a breakthrough in
freeing them from writing programs to sequence
the calculations.

Spreadsheet applications, notably Microsoft
Excel, have continued to add a wide variety of
new features over the last 25 years, but the
essential user interface – the grid metaphor –
has barely changed since VisiCalc [Dan Bricklin,
2001]. It still displays rows and columns labeled

by numbers and letters, with formulas referring
to cells by their grid addresses, and a field at the
top showing the contents of the selected cell.

Using spreadsheets for quantitative
modeling for decision making
People use spreadsheets nowadays for a great
deal more than accounting. They use them to
help manage lists of items, such as product
inventories, assets, contacts, and employees –
essentially small databases. They use them for
budgets. They also use them for analyzing and
forecasting the performance of investments,
businesses, and other organizations. These
latter applications involve significant quantitative
modeling – the spreadsheet models the past,
current, and future revenues, costs, profits, and
often staff, customers, products, and material
inputs and outputs of an industrial process.
These kinds of applications are sometimes
called business analytics.

The grid metaphor is ideal for simple accounting,
for which it was created, and works well for
managing lists, provided the lists are not too
large. It is less suited for quantitative modeling
and business analytics. Indeed, spreadsheets
offer major obstacle to the effective building and
use of quantitative models. Why do I think that?
Below, I will identify ten key deficiencies in the
design of spreadsheet applications that get in
the way of effective modeling. But, first, let us
examine the activity of building and using
quantitative models, so that we can understand
what makes modeling different from basic
accounting, list management, and other simple
applications of spreadsheets.

Insight not numbers: Quantitative modeling
involves, of course, working with numbers – but
the ultimate goal of the exercise is insight, not
numbers. To be effective the model results in
improved decisions, because the decision
makers can base their choices on a deeper
understanding of the situation. Effective
modeling does not replace the decision maker’s
intuition, but rather enriches and extends it. Few
executives or policy makers are willing to base a
decision purely on the numerical outputs of a
model -- which option offers the highest return
on investment or net present value – most want
to know why – what factors and which
assumptions lead to these results, and how
important are their contributions to the
conclusions.

What’s wrong with spreadsheets – and how to fix them

2

A collaborative process: Making important
decisions in organizations, whether business or
public sector, is a collaboration involving multiple
players. Even when there is a single “boss” with
exclusive responsibility for the decision, he or
she almost always relies on inputs from other
people. More often, organizations have some
kind of consultative decision process that
involves multiple people in discussing and
evaluating the options. In either case, the
participants give little credence to a black-box
model that provides only “the numbers”. An
effective model is one that enables exploration
and explanation of its results and helps the
group reach a deeper collective understanding
of the assumptions and implications.

An evolving process: Occasionally, decisions
are “one-off”, but usually a series of similar
decisions must be made daily, monthly, or yearly
– such as who to hire or fire, which R&D projects
to fund, which products to manufacture, whether
to acquire or sell capital equipment or a
manufacturing plant. Ideally, the decision team
learns from experience and improves its
decision process over time.

When we understand decision making to be an
evolving team process and that the goal of
quantitative modeling is insight not numbers, we
can see the importance of two aspects of the
model:

Transparency: If a model is to help provide
insights into the problem and serve as basis for
a team to arrive at a collective understanding,
the model must be transparent – that is, it must
be easy to see what assumptions, relationships,
and numbers go into it, and how those inputs
influence the results.

Flexibility: As the decision process evolves,
participants will suggest new options, more
factors to consider, and criteria to evaluate
them. To support this process, the model should
be flexible enough so that it is easy to explore,
adapt, and extend to include these new issues.

In practice, spreadsheet models are highly
opaque and inflexible relative to what is
possible. Their ubiquity and value for simple
applications has blinded many of us to the
shackles they impose on the creation and
analysis of real decision models. There is
increasing evidence that they are commonly a
source of serious errors, as I shall explain
below. Spreadsheets are catastrophically
unsuitable as a tool to facilitate clear thinking
and deep insights – the real reason that we

create most quantitative models. What was once
an instrument of liberation to the savvy
businessperson has become, all too often, a
source of confusion and frustration.

How often are spreadsheets wrong?
Anyone who has built a spreadsheet knows that
it is easy to make mistakes. How often do
mistakes remain uncaught and lead to seriously
bad decisions? There exist a few worrying
anecdotes, but it is hard to know if they are
isolated incidents. Naturally those involved in
major spreadsheet disasters are rarely willing to
publicize them. There have, however, been
several substantial empirical studies that audit
operational spreadsheets, providing disturbing
results.

Study Number
of spread

sheets

Criterion %
Models

with
Errors

Davies &
Ikin [1987]

19 “Serious” errors. 21%

Butler
[1992]

273 Errors large
enough to need
additional tax
payments. Audited
by UK tax
inspectors

11%

Cragg &
King

[1993]

20 150 to 10,000
cells, serious
errors.

25%

Coopers &
Lybrand
[1997]

23 Results off by at
least 5%

91%

KPMG
[1997]

22 Only major errors. 91%

Butler
[2000]

7 Tax spreadsheets
audited with
enhanced
methodology and
software.

86%

Total 367 Weighted average 24%

Total
since
1997

54 Weighted average 91%

Table 1: Adapted from Raymond R. Panko,
2000. “What we know about spreadsheet errors”

According to Professor Raymond Panko’s
excellent summary of this work (Panko, 2000),
field audits of real-world spreadsheets have

What’s wrong with spreadsheets – and how to fix them

3

found 0.5% to 5% of formula cells contain bugs,
and between 11% and 91% of the spreadsheets
audited were found to contain bugs. Table 1
summarizes some of these studies. Note that
the spreadsheets studied are ones in
operational use within organizations, in many
cases over many years. It is interesting that the
more recent studies, since 1997, found higher
error rates, averaging 91% than the earlier ones.
Panko suggests that this is not because the
actual error rates are increasing. Rather the
more recent studies audited the spreadsheets
more carefully, and identified a higher
percentage of the bugs. It turns out to be easy to
miss bugs: Experiments introducing deliberate
errors find that auditors miss 30% to 50% of
them.

How can errors be so common? Panko points
out that error rates per cell are actually similar to
those in studies of comparably complex tasks,
such initial error rates per line in writing
software. But, commercial software is usually
written by professionals and subject to
systematic testing by separate quality assurance
teams, unlike spreadsheet builders who are
mostly untrained end users. And, most software
bugs create obviously wrong behavior or
crashes, where most spreadsheet errors, such
as the common omissions in summation, give
results that are off by modest percentages, and
are so hard to detect. For these reasons, initial
mistakes in spreadsheets are often uncaught,
and error rates are likely to be much higher than
in commercial software.

Several studies have shown that most
spreadsheet users are unaware of the frequency
of errors, and are overconfident about their
reliability (Brown & Gould, 1987; Davies & Klein,
1987). They are even more confident about
larger spreadsheets (Reithel, Nichols, &
Robinson, 1996), which because of their size
are actually more likely to contain errors. This
may explain why spreadsheet builders often
neglect the importance of careful testing and
auditing.

Ten problems of spreadsheets – and
how to fix them
The focus of the rest of this paper are ten key
deficiencies of spreadsheet design which, I shall
argue, are, to a major extent, responsible for
these problems — summarized in Table 2. The

spreadsheet examples use Microsoft Excel,
because, as the dominant product, it will be
familiar to most readers – certainly not because
it deserves to be singled out as worse than its
competitors.

The good news is that we can avoid, or at least
significantly alleviate, many of these problems
by the use of software tools that are designed
specifically for modeling rather than accounting.
For concreteness, I will illustrate how each of
these ten problems can be addressed by the
use of Analytica, software application that I
helped create, along with several associates,
with precisely this purpose in mind.

1. Meaningless cell references
As any spreadsheet user knows all too well, the
formulas refer to other variables using cell
addresses — such as B2 for column B of row 2
— rather than meaningful names — such as
Revenues or Expenses. Anyone who has tried
to read such formulas, whether written by
someone else or oneself, knows how hard they
can be to understand or verify.

Figure 1: The formula for the selected cell, B4,
uses cell references, B1 and B2, to identify

those variables

Cell addresses reflect how the model happens
to be laid out on the grid, and usually have little
functional relevance to the model. The earliest
computer programs in the 1940s used machine
languages, which refer to each variable using a
number that is its physical address in memory.
In the 1950s, computer scientists developed
assembly languages and higher-level computer
languages, such as Fortran, which let
programmers use meaningful names for
variables. It is amazing that still, fifty years later,
the vast majority of spreadsheets still use cell
addresses as their primary way to refer to
variables.

What’s wrong with spreadsheets – and how to fix them

4

Table 2: Summary of the ten key deficiencies of spreadsheets

What’s wrong with
spreadsheets?

How does Analytica handles the
issue?

What’s the benefit?

1. Meaningless
cell references

It uses a meaningful name to identify
each variable

Formulas are much easier to write,
read, and debug

2. Unstructured
documentation

Each variable is an object: fields include
name, description, units, as well as
definition (formula) and value.

Modelers include clear, complete model
documentation as they go

3. No variables
with defined types
or roles

Each object has a class, such as
decision, constant, chance variable,
objective, or index, defining what role it
has in the model.

Modeler and application both
understand the role of each variable,
which prevents common conceptual
errors.

4. Invisible
dependencies

Influence diagrams provide an intuitive
graphical view, depicting variables as
nodes and dependencies as arrows.

Modelers and decision makers
communicate clearly with each other
about key assumptions and model
structure. It is easy to navigate large
models.

5. Little support
for modularity

You organize a large model as a
hierarchy of simple comprehensible
modules.

Complex models become manageable.
Each diagram shows key variables and
relations, and hides irrelevant details in
submodules.

6. Formulas
define and refer to
cells not tables

With Analytica’s Intelligent Arrays™, a
single formula expresses an operation
on named tables. It automatically
iterates over all dimensions.

The number of formulas to write, verify,
and debug is often 100 to 1,000 times
less, hugely reducing chances for error.

7. Changing a
dimension
demands major
surgery

Analytica understands the indexes that
identify dimensions of a table or array.
Editing or adding a dimension
automatically updates all affected
arrays and keeps formulas correct.

Modifying and adding dimensions to
tables is much faster and less error-
prone. It is easy to manage three or
more dimensions.

8. No built-in
treatment of
uncertainty

The value of any variable can be a
probability distribution. Efficient Latin
hypercube sampling (a type of Monte
Carlo simulation) generates
corresponding distributions on results.

Modelers without special training can
treat uncertainties explicitly and analyze
risks.

9. Minimal
support for
sensitivity
analysis

Automated importance analysis shows
the relative effect of each uncertain
variable on affected outcomes and
decisions.

Modelers without special training can
easily do importance analyses and
generate valuable insights.

10. No separation
of end-user
interface

It’s easy to create a “dashboard”
module, to access the key inputs and
outputs.

The dashboard offers a simple user
interface for model users, protecting
them from seeing or messing with
irrelevant details.

What’s wrong with spreadsheets – and how to fix them

5

Microsoft Excel does provide the option of assigning a
text name to a cell or range. But, if you try to use names
systematically for all variables in model (cells and
tables), you soon find out why few spreadsheet users do
that. Defining a new name for a cell takes 5 steps
(mouse clicks and menu selections). Naming does not
scale well for handling models with hundreds or
thousands of named elements: Excel offers pull-down
menus and list boxes to select names from all the
defined names in a spreadsheet — so it is difficult to use
more than about 40 names in a model, a tiny fraction of
the number of variables in most interesting models. If
you expand a table named by a cell range by appending
columns or rows, you have to reattach the name the
expanded range. Failing to do that properly is a common
source of errors. If you modify a name, it invalidates all
the formulas using the name — rather than automatically
updating them to retain consistency, as Analytica does.

Figure 2: Analytica shows the definition of the selected
variable, Net income, referring to the other variables by
name. The arrows in the influence diagram reflects the

dependencies in the expression

Almost every other kind of modeling tool or computer
language refers to variables by name, and Analytica is
no exception. However, unlike most other systems, if
you decide to change the name of a variable, Analytica
will keep the model self-consistent by automatically
updating all formulas (expressions) to reflect the new
name.

2. No structured documentation
As a spreadsheet builder, you can type text as
documentation into any cell that doesn’t contain a
number or formula. The text may include the name, title,
units of measurement, or even an explanation. It is
conventional, but far from universal, to place this text in
the cell to the left of each cell containing a number or

formula. There is no consistent relationship between
documentation and the formal model (numbers and
formulas). Without any inherent link between
documentation and model, the spreadsheet cannot
reliably assist the user by prompting for documentation,
or maintaining consistency between documentation and
model.

Fig 3: The Object view shows functional and
documentation attributes, including its Class (Variable in

this case), Units (of measurement), Description, and
Definition. The Inputs list automatically reflects the

variables in the Definition.

In Analytica (see Figure 3), each variable is an object
with a standard set of documentation attributes,
including a Class, Identifier, Title, Units of measurement,
and Description, as well as the Definition containing a
number or formula. Since Analytica represents each
variable as a coherent object, it can be smart in keeping
the elements consistent in each view. It automatically
displays the correct Title and Units on any table or
graph. If you change the identifier of a variable in the
Object window view, it automatically updates the
identifier in the diagram node and in all formulas that
refer to it. The standard structure encourages you to
include complete, well-organized documentation as you
define each variable. It also makes it easier for reviewer
to understand a model.

3. No variables with defined types or roles
A spreadsheet cell can contain a number, formula, text
value, documentary text, or empty space. It can be an
input, output, or intermediate calculation — a decision
variable, a constant, the index of a table, or an objective
to be optimized — among many other things. The
problem is that a cell is just a cell as far as the
spreadsheet is concerned — there is no explicit
representation of what role it is intended to play in the
model. As a reader of a spreadsheet, you do not know
what kind of thing to expect in each cell. There is no
easy way to tell text values from documentation, inputs
from outputs, or decisions from objectives. Without
representing this information explicitly, the application
cannot assist the user by providing appropriate options,

What’s wrong with spreadsheets – and how to fix them

6

checking that the contents of the cell is consistent with
its role, and so forestalling common conceptual errors.

Figure 3: An Analytica influence diagram identifies the
type of objects by node shape and type, and the

influences (arrows) between them.

A user of Analytica may designate any variable as an
input or output, making it easily available for changing or
viewing to end users. In Browse mode, the user may
change only variables designated as inputs. Analytica
adapts and extends the widely used conventions of
influence diagrams [Howard & Matheson, 1984] to
denote classes or roles of variable by node shapes:

Net Income

A standard variable is a
deterministic function of its
inputs.

Price elasticity

A chance variable is
uncertain, and not under
direct control of the decision
makers. It is usually
specified as a probability
distribution.

Price

Decision or policy variable,
under the direct control of
decision makers or policy
makers.

Net
Present

Value

An objective quantifies the
degree to which decisions
satisfy the stakeholders. It
might be the expected
profit, the discounted net
present value, or a measure
of utility with multiple goals.

Years

An index variable identifies
the dimensions of tables or
arrays — such as time
periods of interest (years),
geographic sub regions
(e.g. nations), or crop types.
Indexes are important in
defining the scope and level
of detail of the analysis.

Working
days/year

A constant identifies a
simple constant such as the
number of working days in a
year, or conversion factor
from kilowatt-hours to
Joules.

Market
size

Modules are nodes that
contain a set of variables
that comprise a sub
diagram of the diagram
containing a module. By
organizing a large model
into a hierarchy of modules,
and hence a hierarchy of
subdiagrams, you can make
a complex model more
comprehensible.

These graphic conventions make the role of each
variable in the model clear. Since Analytica represents
the class of each object, it can perform automated
checks – for example, ensuring that chance variables
are probabilistic and others are not. If a standard
variable is assigned a probability distribution, it will
automatically change it to a chance variable, updating
the node to an oval. Perhaps most importantly, by
requiring the modeler to choose a class for each variable
when first creating a model, this representation
encourages the modeler to think clearly about the
structure and goals of the model.

The spreadsheet builder can choose graphic
conventions, such as background colors, shading, or
borders, to distinguish inputs and outputs, or other
variable roles – but it offers no consistent notation or
means of checking its use. Excel also provides the ability
(from the data menu) to specify validity checks on inputs
and to lock other cells. However, there is no standard
convention for distinguishing classes of variables, and
the spreadsheet itself contains no explicit representation
of the intended role of each cell in the model. Hence, it
cannot automatically maintain consistent displays and
check the validity of variables. For these reasons,
modelers rarely use these featurs consistently.

What’s wrong with spreadsheets – and how to fix them

7

4. Obscure dependencies
Spreadsheets offer no way to visualize the overall
structure of a model. One effect of using cell references
in formulas is that it is laborious to find out which
variables – or rather cells – depend on each other by
tracing formulas from one cell to another. Recent
releases of Excel offer two ways to trace the inputs to a
selected cell: A “formula view” shows formulas within
each cell, and color codes cell references to identify its
inputs. An “audit tool” will display arrows from the inputs
(or to the outputs) of a selected cell. These tools,
however, can show the dependencies of only one, or a
few, cells at a time. If they could show more, they would
usually appear as incomprehensible spaghetti, because
spreadsheets are not normally laid out to provide a clear
dependency structure.

Figure 4: An Analytica influence diagram depicting a
model with decisions (green rectangles), intermediate
variables and modules (blue rounded rectangles), and
an objective (red hexagon). The arrows (“influences”)

depict dependencies between variables.

In Analytica, the influence diagrams show dependencies
as arrows (“influences”) between variables. These
diagrams are the primary tool for creating models, so the
diagrams are, by construction, meaningful views of the
model structure, not post-hoc ways to visualize a model
as in spreadsheet. As an Analytica modeler, you start
building a model by selecting node types, arranging
them on a diagram, and drawing arrows between them
to depict the dependencies. Having created such a
purely qualitative depiction of the model, you can
subsequently quantify the model by adding numbers and
formulas. As you add a definition, you can paste in
variable and function names by selecting them from a
pulldown list of the inputs identified by the arrows you
drew into that variable. If you paste or type other
variables into a definition, Analytica will automatically
redraw the arrows to maintain consistency between
diagram and definition.

Influence diagrams provide an intuitive, qualitative
representation of the model that is valuable initially when
building a model, and later when reviewing and
explaining it. The diagrams are intuitive enough to be

used by top decision makers and other stakeholders in
collaboration with modelers to help identify key issues,
decisions, and objectives. Together, they can arrive at a
shared understanding of the problem by drawing
influence diagrams, often using a digital projector. This
kind of collaboration is much more inviting and practical
for those who are not “quant jocks” than sitting together
around a spreadsheet.

.

Figure 5: The tabs along the bottom of an Excel window
offer access to multiple worksheets

5. Little support for modularity
The best way to manage large models is to organize
them into a hierarchy of modules, where each module is
small enough to be comprehensible. Excel supports one
level of modularity: organizing a Workbook into a
number of Worksheets, accessible by tabs along the
bottom (see Figure 5). If you use multiple worksheets to
represent a third dimension of a table, it will interfere
with even this kind of modularity. Experienced
spreadsheet users may organize complex models within
each worksheet to reflect an underlying modular
structure, but the application itself is unaware of any
such structure and so can offer no assistance in laying
out or organizing the model.

Analytica lets you group a set of related variables
together within a module: Each module appears its
parent diagram simply as a single node with bold outline.
It automatically displays any dependencies between
modules due to dependencies between the variables
they contain as arrows between the module nodes. In
this way, you can organize a complex model into a
hierarchy of modules with an unlimited number of levels
(see Figure 6). Analytica also offers an expandable
outline view of the module hierarchy to help you
understand and manage larger models.

What’s wrong with spreadsheets – and how to fix them

8

Figure 6: An example three-level module hierarchy: In
the top diagram, the blue node “Model details” opens to

show the central diagram. In “Model details”, nodes
“Market size” and “Sales revenue” are opened to show

third level diagrams.

Figure to be inserted.

Figure 7: An outline view of the module hierarchy.

6. Formulas work with cells not tables
Most spreadsheet models consist largely of tables with
one or two dimensions. The builder is forced to work at
the level of cells rather than tables. Spreadsheet
formulas usually refer to individual cells rather than
tables. Each cell must contain a separate formula, even
when all the cells in the table have identical relationships
with the cells of other tables. Excel offers a relatively
convenient way to create such tables, by “stretching”
one cell across the table – provided you use correct
absolute and relative cell referencing in the initial
formula. But, after you have created the table, the fact
that all the formulas are essentially the same gets lost.
Indeed, if someone changes a single formula in a table,
by design or by accident, it is very difficult to detect –
which is a common source of mistakes.

Figure 8: A spreadsheet table showing the formulas in
every cell.

With Analytica, the expression

Profit := Revenues – Costs

is just the same whether the variables are simple scalars
(single cells), a one-dimensional table for each of 5
years, or a two-dimensional table over 10 divisions of the
company. The relationship is easy to write and easy to
understand. More important, there is only one
relationship to write and review (and store), instead of 50
in the 2-dimensional case. Many models have large
tables with hundreds or thousands of elements, making
them hundreds or thousands of times simpler to audit –
even before taking into account the advantage of using
meaningful names rather than cell references. This is
part of the reason that model files usually reduce in size
by one or two orders of magnitude when translated from
Excel into Analytica, despite the addition of improved
documentation and hierarchical influence diagrams.

In Excel, it is possible to create tables with three
dimensions, using a set of worksheets to represent the
third dimension. However, it is challenging to manipulate
a three-dimensional table – for example, to display a
two-dimensional slice or subtotal over one of the first two
dimensions. Managing tables with more than three
dimensions becomes increasingly more challenging with
each additional dimension.

Figure 9: Show a slice or summary of a multi-
dimensional table by selecting the dimensions to show

down the rows and across the columns.

In Analytica, it is quite easy to create and manage arrays
of many dimensions. The relationship between the
dimensions and the display layout is quite flexible. You
can choose any dimension to display down the rows,

What’s wrong with spreadsheets – and how to fix them

9

another along the columns, simply by picking from a pull-
down menu. Like other OLAP (Online Analytical
Processing), or multidimensional tools, Analytica lets you
flexibly slice, dice, and total over the dimensions of your
choosing.

7. Editing or adding a dimension demands
major surgery
When building a model, the most important and
challenging decisions are typically about how much
detail to include in table dimensions. How far ahead
should your time horizon be? Is it okay to do your
analysis by year, or should it be by quarter or by month?
What about dividing up by sales regions, by product
type, or alternative economic scenarios? Each new
dimension, and each increase in the level of detail,
expands your model and your work substantially. Will
this extra work be worth the improved accuracy and
insight? Ideally, you should start out simply and
experiment with adding detail to see how it affects the
results. Unfortunately, this is usually too much work
when building a spreadsheet. Changing the size of a
dimension, or adding a dimension, to spreadsheet tables
requires much more effort that ought to be necessary.

Suppose your spreadsheet evaluates a new business
over 5 years, from 2003 to 2007. Your boss then tells
you, she needs a 7-year horizon. You will need to extend
every table over time by adding three columns, after the
year 2007, and before the total column if there is one. If
the tables are aligned — and there are no other tables
more than 7 columns wide — you can insert three more
columns into the entire worksheet. You can then stretch
the formulas 2007 column for each table across the
three new columns – assuming there is nothing special
about the 2007 column, which you can’t easily tell until
you look at all the formulas in several columns. You
must also enter new formulas into the Total column,
which does not include the new columns – a common
source of error. If your model contains multiple
worksheets, tables with more than two dimensions, or
tables in which Year goes down rows rather than across
columns, it will take additional work. If there are
computations relying on the number of years, for
example, computing the annual average from the total,
you must remember to fix those two. There is plenty of
scope for making errors, and the errors may be hard to
spot.

Compare this process with the equivalent change in
Analytica: You select the Years index and click <Expr>
to view its definition. Select the final year 2007 and type
2010 to replace it. This Years index applies to all tables
indexed by Years. So, all definitions and tables indexed
by Year are immediately updated to encompass the
expanded range, and guaranteed correct. The definition
of Net Revenue (Revenues – Costs) remains the same.
Any Sum or other array function over Years

automatically extends to the extended Years. All tables
indexed by Years show the new Years, and correct
Totals. Analytica automatically extends any input tables
(Edit tables) indexed by Years, like Revenues in Fig 10,
initializing the added cells or slices to zero. The only task
remaining for you is to fill in the correct values for those
new input cells.

Figure 10: Expanding the Years index by changing the
time horizon from 2007 to 2010. This action

automatically inserts cells containing $0 for the three
new Years in the Edit table for Revenues.

What if you want to add an entire new dimension, say
over five sales regions? You define a new Index as a list
of the sales regions, and add it to the input table(s) you
want to vary by sales region. Any variables that depend
on those tables will automatically extend to include the
new dimension. For example, if you add the dimension

What’s wrong with spreadsheets – and how to fix them

10

to revenues, then net income will automatically expand
to compute by region. Of course, you can display net
income total or by region, as you prefer.

Analytica’s ability to generalize expressions and
operations automatically over multiple dimensions is
known as Intelligent Arrays™. This feature makes it
vastly easier to create and modify multidimensional
models, and to avoid making mistakes. It allows the
modeler and the tool both to work at the level of tables
rather than cells, a more natural and appropriate a level
of abstraction.

8. No treatment of uncertainty
When working with numbers, we know when we think
about it that almost all numbers are uncertain. Some,
like the speed of light, are accurate to one part in 1012.
But, most quantities in practical business modeling or
government policy are far less accurate. It is often
helpful to represent those uncertainties explicitly as
probability distributions, so that you can evaluate and
manage the risks, and discover which sources of
uncertainty are the most important.

Figure 11: Example probability distributions on
corresponding results.

Common spreadsheet applications do not let you
express probabilistic uncertainties directly, although
there are spreadsheet add-ins that make this possible.
Analytica offers probabilistic modeling of uncertainty as a
built-in facility. Being fully integrated into the tool, the
probabilistic analysis is much faster to compute and
usable with minimal training. The uncertainty about any
quantity may be expressed by a probability distribution –
a standard distribution, such as a uniform, normal, or
triangular – or as a custom distribution. To calculate a
model probabilistically, it uses Monte Carlo simulation, or
the more efficient Latin Hypercube simulation to
generate a random sample from each distribution and
propagate them through the model. The sample is
treated simply as an additional dimension, and
propagated with the same Intelligent Array features just
discussed. Analytica automatically estimates the
probability distributions on results and can display them

as probability ranges, density functions, or cumulative
probability functions, as you prefer.

Figure 12: If you select “All” as an option for an input
variable, in this case Price, the model performs a

parametric analysis to display the effects of changing the
values on the results of interest, as shown in Figure 13.

Figure 13: Parametric analysis showing how the net
present value of the new product varies with pricing and

marketing budget.

What’s wrong with spreadsheets – and how to fix them

11

9. Minimal support for sensitivity analysis
Often the most potent source of insights from modeling
arises from sensitivity analysis, to help figure which
inputs and assumptions have the most effect on the
results, and why. Sensitivity analysis includes simple
what-if analysis to see how a change to one input affects
the results, scenario analysis to examine the effects of
combinations of input values, parametric analysis to
graph how changing one or more inputs across several
values affects the results (see), and importance analysis
to identify the relative effect of the uncertainties about
the various input assumptions (see Figure 14).

It is, of course, easy to do single cell what-if analysis
with a spreadsheet. You just change an input and look at
the change in the result — provided you can remember
or record its previous value. Excel also provides
powerful tools for scenario analysis, allowing you to
define and compare the results of scenarios. Parametric
analysis is a little harder but can be achieved by
judicious definition of scenarios.

Importance analysis requires explicit representation of
uncertainty. You will need a proprietary add-in for the
spreadsheet. Analytica provides these kinds of
sensitivity analysis as basic functions. You can easily
provide any input with a list of alternative values. By
default, the input node will show a pulldown list which
includes “All”. (See figures 12 and 13.) Selecting “All” for
one or more inputs automatically generating a one or
more-way parametric analysis over those variables.

Figure 14: Importance analysis, showing the relative
importance (rank order correlation of Monte Carlo

samples) of the uncertain inputs on the uncertainty in the
resulting NPV. It suggests that reducing uncertainty
about market size is much more important than price

elasticity.

10. No separation between end-user interface
and model details
Frequently-used spreadsheets in an organization are
usually built by one person and used by many others. A
good spreadsheet builder knows to separate the inputs
and outputs of interest to the users in one worksheet, as
the user interface or “dashboard” – from the other
internal components segregated into other worksheets.
Ideally, the builder identifies the input cells clearly by
color or shading, and locks all the other cells to prevent
accidental or deliberate tampering with other parts of the
model not designed for changing by end users.
However, audits of operational spreadsheets find that
builders often fail to maintain this clear separation and
locking. Unfortunately, spreadsheet applications provide
them little assistance in doing so.

Figure 15: An example end user interface for the Market
model. It arranges three groups of inputs and one group
of outputs (Results). “Model details” in the module at the

bottom are available for review but not to change.

Analytica provides a special class of module, a form,
designed to provide the human interface for end users.
Drawing an influence arrow from a form module to a
variable automatically creates a corresponding input
node in the form, displayed as an input field, pull-down
menu, or edit table, according to the type and
dimensions of the variable. Drawing an arrow from a
variable to a form creates a corresponding output,
displayed as a number or button opening up to display a
table or graph. The input and output nodes are aliases
to the original variables, allowing the original variables to
remain in their functional positions in their original
modules, but with links set in the form.See Figure 15 for
an example.

In a spreadsheet, the modeler who wants to preserve
the logical structure of the internal worksheets would
need to make cells or tables that copy from inputs or to
outputs. In Browse mode, Analytica lets the user change
only designated inputs, and prevents direct changes to
any other part of the model. The Analytica Player offers

What’s wrong with spreadsheets – and how to fix them

12

only Browse Mode. The Enterprise version allows any
model to be locked in Browse mode, no matter which
version of Analytica the end user has.

Analytica’s Intelligent Arrays offers an extra flexibility for
end users. If an Index variable, such as Years, is made
available as an Input, the user may modify the
corresponding dimension. Any input table indexed by
Years will then automatically expand or contract
accordingly. In Spreadsheets, the only practical
approach is to create all tables with enough rows and
columns to handle the largest possible application –
most inefficient when most end users need many fewer.
Allowing end users to add dimensions to tables is quite
impractical – something which is quite easy in
Analytica’s methods for “parametric analysis”

User-interface metaphors and levels of
representation
Like any user-oriented software, the usability of
spreadsheets lives or dies by its user-interface
metaphors. The spreadsheet grid as a user-interface
metaphor — so well-adapted for accounting — is poorly
suited for more sophisticated modeling. The limitations
of the grid metaphor are, I believe, a major cause of the
high frequency of errors in spreadsheets. It makes errors
easy to make and hard to detect. It requires massive
redundancy in the representation of relationships
between tables. It does little to encourage structured
documentation and modular organization. Worst of all, it
does not represent high-level knowledge about a model:
It does not match the way an expert analyst thinks about
the problem. Spreadsheets are therefore unable to
assist the user in creating and testing a model at the
appropriate level of representation.

We can summarize the deficiencies of spreadsheets by
saying that they work at too low a level of representation.
The grid deals with cells. The modeler is – or should be
– thinking about higher level entities, such as variables,
influences, modules, hierarchies, dimensions and arrays,
uncertainties, and sensitivities. A modeling tool that
displays these entities and lets the user interact with
them directly feels much more intuitive and empowering
to a modeler. It reduces the need for mental translation
between the representations used by the modeler and
by the software. It makes it much to write, review, verify,
explain, and extend models. It reduces the number of
errors by preventing many kinds of errors from being
made in the first place, and by making remaining errors
easier to detect and fix.

Building and analyzing business models and other kinds
of quantitative models is primarily about improving your
qualitative understanding of the problem leading to
better decisions. This understanding involves identifying
what decision options or strategies are worth looking at,
what the objectives are, which issues and uncertainties
might have the largest effects on the results, and the

reasons or conditions to prefer one decision over
another. It is usually a social process that involves
several people developing an improved shared
understanding. For all these reasons, an effective model
is one that improves communication. Representations
like influence diagrams provide an excellent way for
people to discuss and explain the qualitative structure of
a model. High quality documentation is essential if
people are to understand the assumptions of a model.
Sensitivity and uncertainty analysis helps answer
questions about what factors are important to the
recommendations and why.

For coherence and consistency, the diagrams and
documentation should be completely integrated into the
quantitative aspects of the model, rather than, as they
often are, entirely separate documents, in different
applications — say Powerpoint, Word, and Excel. In
principle, such documents can be linked together using
OLE, but these links cannot easily maintain consistency
of structure between representations.

Why do we need a different application to
fix spreadsheets?
The deficiencies of spreadsheets are scarcely a negative
reflection on their developers. Spreadsheet developers,
notably of Microsoft Excel, seem to be aware of many of
these problems, and they have made heroic efforts to
address some of them — including named cells and
ranges, the audit tool, the outliner, cell locking, data
validation, pivot tables, among others. The problem is
that it is very difficult to retrofit the original spreadsheet
paradigm with the needed higher levels of
representation. It is hard to make these features
integrate well with each other while being completely
backward compatible. For example, Excel lets you
choose the text to the right of a cell, or row, as its name,
but it does not remember the connection when you
update the text cell. Even if you change the name of a
cell, it does not update the formulas that use that name.
If you add columns or rows adjacent to a named range, it
does not extend the range. It would be very hard to
provide automatic propagation of changes to table
dimensions in a spreadsheet. Because the tables are
embedded in the grid, it would require automatic
insertion or deletion of rows or columns in the grid, which
might break other parts of the model using the same
rows or columns but not indexed by those dimensions.

It was much easier for the author and his team to design
Analytica as a modeling tool without having to worry
about backward compatibility (although, the first version,
known as Demos, was in fact designed around the same
time as the first spreadsheet in 1979).

By designing the features as a coherent whole, we were
able to obtain great synergies among them. For
example, since variables can represent arrays, an
influence diagram can represent a large

What’s wrong with spreadsheets – and how to fix them

13

multidimensional model with relatively few variables. If
you needed a separate variable for each cell, the
diagrams and influence arrows, would be overwhelming
and incomprehensible – imagine using Excel’s audit tool
to display arrows for the dependencies among all the
cells in a spreadsheet. Hierarchical modules allow
organization of much more complex models into a set of
comprehensible diagrams. Automatic propagation of
changes to indexes and addition of dimensions works
well in Analytica, but would be problematic if the tables
of varying sizes were embedded in a fixed spreadsheet
grid.

Analytica is not the only modeling tool to offer any of the
features that fix the listed deficiencies in spreadsheets.
There are decision analysis tools that provide influence
diagrams (if not hierarchical modules). There are
spreadsheet add-ins that support treatment of
uncertainty with Monte Carlo simulation. And there are
OLAP tools that provide versions of array abstraction.
However, Analytica is the only tool we know of that
provides all these three key elements as an integrated
whole, and can therefore benefit from the considerable
synergies among them.

References
Bricklin, Dan (2001) “The first spreadsheet”
http://www.bricklin.com/firstspreadsheetquestion.html

Panko, Raymond. “Errors in spreadsheets” The Journal
of End User Computing, Vol 10, No 2, Spring 1998, pp
15-21 1998.
http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm

Howard. RM & Matheson, J. 1984. “Influence diagrams”.
Principles and Practice of Decision Analysis, Strategic
Decisions Group.

http://www.bricklin.com/firstspreadsheetquestion.html
http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm

	The original “killer app”
	Using spreadsheets for quantitative modeling for decision ma
	How often are spreadsheets wrong?
	Criterion

	Ten problems of spreadsheets – and how to fix them
	1. Meaningless cell references
	2. No structured documentation
	3. No variables with defined types or roles
	4. Obscure dependencies
	5. Little support for modularity
	6. Formulas work with cells not tables
	7. Editing or adding a dimension demands major surgery
	8. No treatment of uncertainty
	9. Minimal support for sensitivity analysis
	10. No separation between end-user interface and model detai

	User-interface metaphors and levels of representation
	Why do we need a different application to fix spreadsheets?
	References

