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The original “killer app” 
The twenty-fifth anniversary of the first 
spreadsheet is almost upon us: The first 
spreadsheet, VisiCalc, was developed by Dan 
Bricklin and Bob Frankston, and released in May 
1979 for the Apple II. Now that there are many 
tens of millions of spreadsheet users, 
spreadsheets as a category rarely make 
headlines, it is easy to forget that the 
spreadsheet was the original “killer app”: In the 
early 1980s, the spreadsheet was the vehicle on 
which the personal computer first rode to fame 
and fortune. Before spreadsheets, the personal 
computer was mostly seen as a complicated toy 
for hobbyists. Spreadsheets, by offering 
immediate practical value to businesses, 
convinced millions to buy their first personal 
computer.  

Following VisiCalc, Mitch Kapor developed 
Lotus 123 and released it for the IBM PC in 
1983. Lotus 123 rapidly became the dominant 
spreadsheet for the rest of the 1980s. Microsoft 
first released Excel as one of the first 
applications on the new Macintosh in 1984-5. 
Excel became Microsoft’s flagship product on 
Windows with the release of Windows 3.0 in 
1989. Since then it has achieved near complete 
domination of the category. 

The application takes its name from the 
accountants’ spreadsheet — a sheet of paper 
with ruled rows and columns, in use for 
hundreds of years. Part of its immediate success 
lay in its user-interface metaphor — the 
electronic grid that looked seductively familiar to 
those accustomed to paper spreadsheets — the 
layout with row labels down the left-hand column 
and columns of numbers with totals at the 
bottom. The ability of the computer spreadsheet 
to recalculate results as you change input 
numbers seemed almost miraculous to those 
accustomed to using a hand – or head – 
calculator. Even for those few who had been 
programming computers to perform such 
calculations, the way in which the spreadsheet 
maintains the dependencies and automatically 
recalculate formulas was a breakthrough in 
freeing them from writing programs to sequence 
the calculations. 

Spreadsheet applications, notably Microsoft 
Excel, have continued to add a wide variety of 
new features over the last 25 years, but the 
essential user interface – the grid metaphor – 
has barely changed since VisiCalc [Dan Bricklin, 
2001]. It still displays rows and columns labeled 

by numbers and letters, with formulas referring 
to cells by their grid addresses, and a field at the 
top showing the contents of the selected cell.  

Using spreadsheets for quantitative 
modeling for decision making 
People use spreadsheets nowadays for a great 
deal more than accounting. They use them to 
help manage lists of items, such as product 
inventories, assets, contacts, and employees – 
essentially small databases. They use them for 
budgets. They also use them for analyzing and 
forecasting the performance of investments, 
businesses, and other organizations. These 
latter applications involve significant quantitative 
modeling – the spreadsheet models the past, 
current, and future revenues, costs, profits, and 
often staff, customers, products, and material 
inputs and outputs of an industrial process. 
These kinds of applications are sometimes 
called business analytics. 

The grid metaphor is ideal for simple accounting, 
for which it was created, and works well for 
managing lists, provided the lists are not too 
large. It is less suited for quantitative modeling 
and business analytics. Indeed, spreadsheets 
offer major obstacle to the effective building and 
use of quantitative models. Why do I think that? 
Below, I will identify ten key deficiencies in the 
design of spreadsheet applications that get in 
the way of effective modeling. But, first, let us 
examine the activity of building and using 
quantitative models, so that we can understand 
what makes modeling different from basic 
accounting, list management, and other simple 
applications of spreadsheets. 

Insight not numbers: Quantitative modeling 
involves, of course, working with numbers – but 
the ultimate goal of the exercise is insight, not 
numbers. To be effective the model results in 
improved decisions, because the decision 
makers can base their choices on a deeper 
understanding of the situation. Effective 
modeling does not replace the decision maker’s 
intuition, but rather enriches and extends it.  Few 
executives or policy makers are willing to base a 
decision purely on the numerical outputs of a 
model -- which option offers the highest return 
on investment or net present value – most want 
to know why – what factors and which 
assumptions lead to these results, and how 
important are their contributions to the 
conclusions.   
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A collaborative process: Making important 
decisions in organizations, whether business or 
public sector, is a collaboration involving multiple 
players. Even when there is a single “boss” with 
exclusive responsibility for the decision, he or 
she almost always relies on inputs from other 
people. More often, organizations have some 
kind of consultative decision process that 
involves multiple people in discussing and 
evaluating the options. In either case, the 
participants give little credence to a black-box 
model that provides only “the numbers”. An 
effective model is one that enables exploration 
and explanation of its results and helps the 
group reach a deeper collective understanding 
of the assumptions and implications. 

An evolving process:  Occasionally, decisions 
are “one-off”, but usually a series of similar 
decisions must be made daily, monthly, or yearly 
– such as who to hire or fire, which R&D projects 
to fund, which products to manufacture, whether 
to acquire or sell capital equipment or a 
manufacturing plant. Ideally, the decision team 
learns from experience and improves its 
decision process over time. 

When we understand decision making to be an 
evolving team process and that the goal of 
quantitative modeling is insight not numbers, we 
can see the importance of two aspects of the 
model: 

Transparency:  If a model is to help provide 
insights into the problem and serve as basis for 
a team to arrive at a collective understanding, 
the model must be transparent – that is, it must 
be easy to see what assumptions, relationships, 
and numbers go into it, and how those inputs 
influence the results.  

Flexibility:  As the decision process evolves, 
participants will suggest new options, more 
factors to consider, and criteria to evaluate 
them. To support this process, the model should 
be flexible enough so that it is easy to explore, 
adapt, and extend to include these new issues.  

In practice, spreadsheet models are highly 
opaque and inflexible relative to what is 
possible. Their ubiquity and value for simple 
applications has blinded many of us to the 
shackles they impose on the creation and 
analysis of real decision models. There is 
increasing evidence that they are commonly a 
source of serious errors, as I shall explain 
below. Spreadsheets are catastrophically 
unsuitable as a tool to facilitate clear thinking 
and deep insights – the real reason that we 

create most quantitative models. What was once 
an instrument of liberation to the savvy 
businessperson has become, all too often, a 
source of confusion and frustration. 

How often are spreadsheets wrong? 
Anyone who has built a spreadsheet knows that 
it is easy to make mistakes. How often do 
mistakes remain uncaught and lead to seriously 
bad decisions? There exist a few worrying 
anecdotes, but it is hard to know if they are 
isolated incidents. Naturally those involved in 
major spreadsheet disasters are rarely willing to 
publicize them. There have, however, been 
several substantial empirical studies that audit 
operational spreadsheets, providing disturbing 
results.  

Study Number 
of spread 

sheets 

Criterion % 
Models 

with 
Errors

Davies & 
Ikin [1987]

19 “Serious” errors. 21% 

Butler 
[1992] 

273 Errors large 
enough to need 
additional tax 
payments. Audited 
by UK tax 
inspectors 

11% 

Cragg & 
King 

[1993] 

20 150 to 10,000 
cells, serious 
errors. 

25% 

Coopers & 
Lybrand 
[1997] 

23 Results off by at 
least 5% 

91% 

KPMG 
[1997] 

22 Only major errors. 91% 

Butler 
[2000] 

7 Tax spreadsheets 
audited with 
enhanced 
methodology and 
software.  

86% 

Total 367 Weighted average 24% 

Total 
since 
1997 

54 Weighted average 91% 

Table 1: Adapted from Raymond R. Panko, 
2000. “What we know about spreadsheet errors” 

According to Professor Raymond Panko’s 
excellent summary of  this work (Panko, 2000), 
field audits of real-world spreadsheets have 
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found 0.5% to 5% of formula cells contain bugs, 
and between 11% and 91% of the spreadsheets 
audited were found to contain bugs. Table 1 
summarizes some of these studies. Note that 
the spreadsheets studied are ones in 
operational use within organizations, in many 
cases over many years. It is interesting that the 
more recent studies, since 1997, found higher 
error rates, averaging 91% than the earlier ones.  
Panko suggests that this is not because the 
actual error rates are increasing. Rather the 
more recent studies audited the spreadsheets 
more carefully, and identified a higher 
percentage of the bugs. It turns out to be easy to 
miss bugs: Experiments introducing deliberate 
errors find that auditors miss 30% to 50% of 
them. 

How can errors be so common? Panko points 
out that error rates per cell are actually similar to 
those in studies of comparably complex tasks, 
such initial error rates per line in writing 
software. But, commercial software is usually 
written by professionals and subject to 
systematic testing by separate quality assurance 
teams, unlike spreadsheet builders who are 
mostly untrained end users. And, most software 
bugs create obviously wrong behavior or 
crashes, where most spreadsheet errors, such 
as the common omissions in summation, give 
results that are off by modest percentages, and 
are so hard to detect. For these reasons, initial 
mistakes in spreadsheets are often uncaught, 
and error rates are likely to be much higher than 
in commercial software.  

Several studies have shown that most 
spreadsheet users are unaware of the frequency 
of errors, and are overconfident about their 
reliability (Brown & Gould, 1987; Davies & Klein, 
1987). They are even more confident about 
larger spreadsheets (Reithel, Nichols, & 
Robinson, 1996), which because of their size 
are actually more likely to contain errors. This 
may explain why spreadsheet builders often 
neglect the importance of careful testing and 
auditing.  

Ten problems of spreadsheets – and 
how to fix them 
The focus of the rest of this paper are ten key 
deficiencies of spreadsheet design which, I shall 
argue, are, to a major extent, responsible for 
these problems — summarized in Table 2. The 

spreadsheet examples use Microsoft Excel, 
because, as the dominant product, it will be 
familiar to most readers – certainly not because 
it deserves to be singled out as worse than its 
competitors.  

The good news is that we can avoid, or at least 
significantly alleviate, many of these problems 
by the use of software tools that are designed 
specifically for modeling rather than accounting. 
For concreteness, I will illustrate how each of 
these ten problems can be addressed by the 
use of Analytica, software application that I 
helped create, along with several associates, 
with precisely this purpose in mind.  

1. Meaningless cell references 
As any spreadsheet user knows all too well, the 
formulas refer to other variables using cell 
addresses — such as B2 for column B of row 2 
—  rather than meaningful names —  such as 
Revenues or Expenses. Anyone who has tried 
to read such formulas, whether written by 
someone else or oneself, knows how hard they 
can be to understand or verify. 

 

Figure 1: The formula for the selected cell, B4, 
uses cell references, B1 and B2, to identify 

those variables

Cell addresses reflect how the model happens 
to be laid out on the grid, and usually have little 
functional relevance to the model. The earliest 
computer programs in the 1940s used machine 
languages, which refer to each variable using a 
number that is its physical address in memory. 
In the 1950s, computer scientists developed 
assembly languages and higher-level computer 
languages, such as Fortran, which let 
programmers use meaningful names for 
variables. It is amazing that still, fifty years later, 
the vast majority of spreadsheets still use cell 
addresses as their primary way to refer to 
variables.  



What’s wrong with spreadsheets – and how to fix them 

4 

Table 2: Summary of the ten key deficiencies of spreadsheets 

What’s wrong with 
spreadsheets? 

How does Analytica handles the 
issue? 

What’s the benefit? 

1. Meaningless 
cell references 

It uses a meaningful name to identify 
each variable 

Formulas are much easier to write, 
read, and debug 

2. Unstructured 
documentation 

Each variable is an object: fields include 
name, description, units, as well as 
definition (formula) and value. 

Modelers include clear, complete model 
documentation as they go  

3. No variables 
with defined types 
or roles 

Each object has a class, such as 
decision, constant, chance variable, 
objective, or index, defining what role it 
has in the model. 

Modeler and application both 
understand the role of each variable, 
which prevents common conceptual 
errors. 

4. Invisible 
dependencies 

Influence diagrams provide an intuitive 
graphical view, depicting variables as 
nodes and dependencies as arrows.  

Modelers and decision makers 
communicate clearly with each other 
about key assumptions and model 
structure. It is easy to navigate large 
models. 

5. Little support 
for modularity 

You organize a large model as a 
hierarchy of simple comprehensible 
modules.  

Complex models become manageable. 
Each diagram shows key variables and 
relations, and hides irrelevant details in 
submodules.  

6.   Formulas 
define and refer to 
cells not tables 

With Analytica’s Intelligent Arrays™, a 
single formula expresses an operation 
on named tables. It automatically 
iterates over all dimensions.  

The number of formulas to write, verify, 
and debug is often 100 to 1,000 times 
less, hugely reducing chances for error. 

7. Changing a 
dimension 
demands major 
surgery 

Analytica understands the indexes that 
identify dimensions of a table or array. 
Editing or adding a dimension 
automatically updates all affected 
arrays and keeps formulas correct.  

Modifying and adding dimensions to 
tables is much faster and less error-
prone. It is easy to manage three or 
more dimensions.  

8.  No built-in 
treatment of 
uncertainty 

The value of any variable can be a 
probability distribution. Efficient Latin 
hypercube sampling (a type of Monte 
Carlo simulation) generates 
corresponding distributions on results.  

Modelers without special training can 
treat uncertainties explicitly and analyze 
risks. 

9.  Minimal 
support for 
sensitivity 
analysis 

Automated importance analysis shows 
the relative effect of each uncertain 
variable on affected outcomes and 
decisions.  

Modelers without special training can 
easily do importance analyses and 
generate valuable insights. 

10. No separation 
of end-user 
interface  

It’s easy to create a “dashboard” 
module,  to access the key inputs and 
outputs. 

The dashboard offers a simple user 
interface for model users, protecting 
them from seeing or messing with 
irrelevant details.  
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Microsoft Excel does provide the option of assigning a 
text name to a cell or range. But, if you try to use names 
systematically for all variables in model (cells and 
tables), you soon find out why few spreadsheet users do 
that. Defining a new name for a cell takes 5 steps 
(mouse clicks and menu selections). Naming does not 
scale well for handling models with hundreds or 
thousands of named elements: Excel offers pull-down 
menus and list boxes to select names from all the 
defined names in a spreadsheet — so it is difficult to use 
more than about 40 names in a model, a tiny fraction of 
the number of variables in most interesting models. If 
you expand a table named by a cell range by appending 
columns or rows, you have to reattach the name the 
expanded range. Failing to do that properly is a common 
source of errors. If you modify a name, it invalidates all 
the formulas using the name — rather than automatically 
updating them to retain consistency, as Analytica does.  

 

 

Figure 2: Analytica shows the definition of the selected 
variable, Net income, referring to the other variables by 
name. The arrows in the influence diagram reflects the 

dependencies in the expression 

Almost every other kind of modeling tool or computer 
language refers to variables by name, and Analytica is 
no exception. However, unlike most other systems, if 
you decide to change the name of a variable, Analytica 
will keep the model self-consistent by automatically 
updating all formulas (expressions) to reflect the new 
name.  

2. No structured documentation 
As a spreadsheet builder, you can type text as 
documentation into any cell that doesn’t contain a 
number or formula. The text may include the name, title, 
units of measurement, or even an explanation. It is 
conventional, but far from universal, to place this text in 
the cell to the left of each cell containing a number or 

formula. There is no consistent relationship between 
documentation and the formal model (numbers and 
formulas).  Without any inherent link between 
documentation and model, the spreadsheet cannot 
reliably assist the user by prompting for documentation, 
or maintaining consistency between documentation and 
model.  

 

Fig 3: The Object view shows functional and 
documentation attributes, including its Class (Variable in 

this case), Units (of measurement), Description, and 
Definition. The Inputs list automatically reflects the 

variables in the Definition. 

In Analytica (see Figure 3), each variable is an object 
with a standard set of documentation attributes, 
including a Class, Identifier, Title, Units of measurement, 
and Description, as well as the Definition containing a 
number or formula.  Since Analytica represents each 
variable as a coherent object, it can be smart in keeping 
the elements consistent in each view.  It automatically 
displays the correct Title and Units on any table or 
graph. If you change the identifier of a variable in the 
Object window view, it automatically updates the 
identifier in the diagram node and in all formulas that 
refer to it.  The standard structure encourages you to 
include complete, well-organized documentation as you 
define each variable.  It also makes it easier for reviewer 
to understand a model. 

3. No variables with defined types or roles 
A spreadsheet cell can contain a number, formula, text 
value, documentary text, or empty space. It can be an 
input, output, or intermediate calculation — a decision 
variable, a constant, the index of a table, or an objective 
to be optimized — among many other things.  The 
problem is that a cell is just a cell as far as the 
spreadsheet is concerned — there is no explicit 
representation of what role it is intended to play in the 
model. As a reader of a spreadsheet, you do not know 
what kind of thing to expect in each cell. There is no 
easy way to tell text values from documentation, inputs 
from outputs, or decisions from objectives. Without 
representing this information explicitly, the application 
cannot assist the user by providing appropriate options, 
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checking that the contents of the cell is consistent with 
its role, and so forestalling common conceptual errors.  

 

Figure 3: An Analytica influence diagram identifies the 
type of objects by node shape and type, and the 

influences (arrows) between them. 

A user of Analytica may designate any variable as an 
input or output, making it easily available for changing or 
viewing to end users. In Browse mode, the user may 
change only variables designated as inputs. Analytica 
adapts and extends the widely used conventions of 
influence diagrams [Howard & Matheson, 1984] to 
denote classes or roles of variable by node shapes: 

Net Income

 

A standard variable is a 
deterministic function of its 
inputs.  

Price elasticity

 

A chance variable is 
uncertain, and not under 
direct control of the decision 
makers. It is usually 
specified as a probability 
distribution.  

Price

 

Decision or policy variable, 
under the direct control of 
decision makers or policy 
makers.  

Net
Present

Value
 

An objective quantifies the 
degree to which decisions 
satisfy the stakeholders. It 
might be the expected 
profit, the discounted net 
present value, or a measure 
of utility with multiple goals.  

Years

An index variable identifies 
the dimensions of tables or 
arrays — such as time 
periods of interest (years), 
geographic sub regions 
(e.g. nations), or crop types. 
Indexes are important in 
defining the scope and level 
of detail of the analysis.  

Working
days/year

A constant identifies a 
simple constant such as the 
number of working days in a 
year, or conversion factor 
from kilowatt-hours to 
Joules. 

Market
size

Modules are nodes that 
contain a set of variables 
that comprise a sub 
diagram of the diagram 
containing a module. By 
organizing a large model 
into a hierarchy of modules, 
and hence a hierarchy of 
subdiagrams, you can make 
a complex model more 
comprehensible.  

These graphic conventions make the role of each 
variable in the model clear. Since Analytica represents 
the class of each object, it can perform automated 
checks – for example, ensuring that chance variables 
are probabilistic and others are not. If a standard 
variable is assigned a probability distribution, it will 
automatically change it to a chance variable, updating 
the node to an oval. Perhaps most importantly, by 
requiring the modeler to choose a class for each variable 
when first creating a model, this representation 
encourages the modeler to think clearly about the 
structure and goals of the model. 

The spreadsheet builder can choose graphic 
conventions, such as background colors, shading, or 
borders, to distinguish inputs and outputs, or other 
variable roles – but it offers no consistent notation or 
means of checking its use. Excel also provides the ability 
(from the data menu) to specify validity checks on inputs 
and to lock other cells. However, there is no standard 
convention for distinguishing classes of variables, and 
the spreadsheet itself contains no explicit representation 
of the intended role of each cell in the model. Hence, it 
cannot automatically maintain consistent displays and 
check the validity of variables. For these reasons, 
modelers rarely use these featurs consistently.  
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4. Obscure dependencies 
Spreadsheets offer no way to visualize the overall 
structure of a model. One effect of using cell references 
in formulas is that it is laborious to find out which 
variables – or rather cells – depend on each other by 
tracing formulas from one cell to another. Recent 
releases of Excel offer two ways to trace the inputs to a 
selected cell:  A “formula view” shows formulas within 
each cell, and color codes cell references to identify its 
inputs. An “audit tool” will display arrows from the inputs 
(or to the outputs) of a selected cell. These tools, 
however, can show the dependencies of only one, or a 
few, cells at a time. If they could show more, they would 
usually appear as incomprehensible spaghetti, because 
spreadsheets are not normally laid out to provide a clear 
dependency structure.  

 

Figure 4: An Analytica influence diagram depicting a 
model with decisions (green rectangles), intermediate 
variables and modules (blue rounded rectangles), and 
an objective (red hexagon). The arrows (“influences”) 

depict dependencies between variables. 

In Analytica, the influence diagrams show dependencies 
as arrows (“influences”) between variables. These 
diagrams are the primary tool for creating models, so the 
diagrams are, by construction, meaningful views of the 
model structure, not post-hoc ways to visualize a model 
as in spreadsheet. As an Analytica modeler, you start 
building a model by selecting node types, arranging 
them on a diagram, and drawing arrows between them 
to depict the dependencies. Having created such a 
purely qualitative depiction of the model, you can 
subsequently quantify the model by adding numbers and 
formulas. As you add a definition, you can paste in 
variable and function names by selecting them from a 
pulldown list of the inputs identified by the arrows you 
drew into that variable. If you paste or type other 
variables into a definition, Analytica will automatically 
redraw the arrows to maintain consistency between 
diagram and definition. 

Influence diagrams provide an intuitive, qualitative 
representation of the model that is valuable initially when 
building a model, and later when reviewing and 
explaining it. The diagrams are intuitive enough to be 

used by top decision makers and other stakeholders in 
collaboration with modelers to help identify key issues, 
decisions, and objectives. Together, they can arrive at a 
shared understanding of the problem by drawing 
influence diagrams, often using a digital projector. This 
kind of collaboration is much more inviting and practical 
for those who are not “quant jocks” than sitting together 
around a spreadsheet.  

.  

 

Figure 5: The tabs along the bottom of an Excel window 
offer access to multiple worksheets 

5. Little support for modularity 
The best way to manage large models is to organize 
them into a hierarchy of modules, where each module is 
small enough to be comprehensible. Excel supports one 
level of modularity: organizing a Workbook into a 
number of Worksheets, accessible by tabs along the 
bottom (see Figure 5). If you use multiple worksheets to 
represent a third dimension of a table, it will interfere 
with even this kind of modularity.  Experienced 
spreadsheet users may organize complex models within 
each worksheet to reflect an underlying modular 
structure, but the application itself is unaware of any 
such structure and so can offer no assistance in laying 
out or organizing the model. 

Analytica lets you group a set of related variables 
together within a module: Each module appears its 
parent diagram simply as a single node with bold outline. 
It automatically displays any dependencies between 
modules due to dependencies between the variables 
they contain as arrows between the module nodes. In 
this way, you can organize a complex model into a 
hierarchy of modules with an unlimited number of levels 
(see Figure 6). Analytica also offers an expandable 
outline view of the module hierarchy to help you 
understand and manage larger models.  
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Figure 6: An example three-level module hierarchy: In 
the top diagram, the blue node “Model details” opens to 

show the central diagram. In “Model details”, nodes 
“Market size” and “Sales revenue” are opened to show 

third level diagrams.  

Figure to be inserted. 

Figure 7: An outline view of the module hierarchy.  

6. Formulas work with cells not tables 
Most spreadsheet models consist largely of tables with 
one or two dimensions. The builder is forced to work at 
the level of cells rather than tables. Spreadsheet 
formulas usually refer to individual cells rather than 
tables. Each cell must contain a separate formula, even 
when all the cells in the table have identical relationships 
with the cells of other tables. Excel offers a relatively 
convenient way to create such tables, by “stretching” 
one cell across the table – provided you use correct 
absolute and relative cell referencing in the initial 
formula. But, after you have created the table, the fact 
that all the formulas are essentially the same gets lost. 
Indeed, if someone changes a single formula in a table, 
by design or by accident, it is very difficult to detect – 
which is a common source of mistakes.  

 

Figure 8: A spreadsheet table showing the formulas in 
every cell. 

With Analytica, the expression  

Profit := Revenues – Costs 

is just the same whether the variables are simple scalars 
(single cells), a one-dimensional table for each of 5 
years, or a two-dimensional table over 10 divisions of the 
company. The relationship is easy to write and easy to 
understand. More important, there is only one 
relationship to write and review (and store), instead of 50 
in the 2-dimensional case. Many models have large 
tables with hundreds or thousands of elements, making 
them hundreds or thousands of times simpler to audit – 
even before taking into account the advantage of using 
meaningful names rather than cell references. This is 
part of the reason that model files usually reduce in size 
by one or two orders of magnitude when translated from 
Excel into Analytica, despite the addition of improved 
documentation and hierarchical influence diagrams.  

In Excel, it is possible to create tables with three 
dimensions, using a set of worksheets to represent the 
third dimension. However, it is challenging to manipulate 
a three-dimensional table – for example, to display a 
two-dimensional slice or subtotal over one of the first two 
dimensions. Managing tables with more than three 
dimensions becomes increasingly more challenging with 
each additional dimension. 

 

Figure 9: Show a slice or summary of a multi-
dimensional table by selecting the dimensions to show 

down the rows and across the columns. 

In Analytica, it is quite easy to create and manage arrays 
of many dimensions. The relationship between the 
dimensions and the display layout is quite flexible. You 
can choose any dimension to display down the rows, 
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another along the columns, simply by picking from a pull-
down menu. Like other OLAP (Online Analytical 
Processing), or multidimensional tools, Analytica lets you 
flexibly slice, dice, and total over the dimensions of your 
choosing. 

7. Editing or adding a dimension demands 
major surgery 
When building a model, the most important and 
challenging decisions are typically about how much 
detail to include in table dimensions. How far ahead 
should your time horizon be? Is it okay to do your 
analysis by year, or should it be by quarter or by month? 
What about dividing up by sales regions, by product 
type, or alternative economic scenarios?  Each new 
dimension, and each increase in the level of detail, 
expands your model and your work substantially. Will 
this extra work be worth the improved accuracy and 
insight? Ideally, you should start out simply and 
experiment with adding detail to see how it affects the 
results. Unfortunately, this is usually too much work 
when building a spreadsheet. Changing the size of a 
dimension, or adding a dimension, to spreadsheet tables 
requires much more effort that ought to be necessary. 

Suppose your spreadsheet evaluates a new business 
over 5 years, from 2003 to 2007.  Your boss then tells 
you, she needs a 7-year horizon. You will need to extend 
every table over time by adding three columns, after the 
year 2007, and before the total column if there is one. If 
the tables are aligned — and there are no other tables 
more than 7 columns wide — you can insert three more 
columns into the entire worksheet. You can then stretch 
the formulas 2007 column for each table across the 
three new columns – assuming there is nothing special 
about the 2007 column, which you can’t easily tell until 
you look at all the formulas in several columns. You 
must also enter new formulas into the Total column, 
which does not include the new columns – a common 
source of error.  If your model contains multiple 
worksheets, tables with more than two dimensions, or 
tables in which Year goes down rows rather than across 
columns, it will take additional work. If there are 
computations relying on the number of years, for 
example, computing the annual average from the total, 
you must remember to fix those two. There is plenty of 
scope for making errors, and the errors may be hard to 
spot. 

Compare this process with the equivalent change in 
Analytica: You select the Years index and click <Expr> 
to view its definition. Select the final year 2007 and type 
2010 to replace it. This Years index applies to all tables 
indexed by Years. So, all definitions and tables indexed 
by Year are immediately updated to encompass the 
expanded range, and guaranteed correct. The definition 
of Net Revenue (Revenues – Costs) remains the same. 
Any Sum or other array function over Years 

automatically extends to the extended Years. All tables 
indexed by Years show the new Years, and correct 
Totals. Analytica automatically extends any input tables 
(Edit tables) indexed by Years, like Revenues in Fig 10, 
initializing the added cells or slices to zero. The only task 
remaining for you is to fill in the correct values for those 
new input cells.  

 

 

 

Figure 10: Expanding the Years index by changing the 
time horizon from 2007 to 2010. This action 

automatically inserts cells containing $0 for the three 
new Years in the Edit table for Revenues. 

What if you want to add an entire new dimension, say 
over five sales regions?  You define a new Index as a list 
of the sales regions, and add it to the input table(s) you 
want to vary by sales region. Any variables that depend 
on those tables will automatically extend to include the 
new dimension. For example, if you add the dimension 
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to revenues, then net income will automatically expand 
to compute by region. Of course, you can display net 
income total or by region, as you prefer. 

Analytica’s ability to generalize expressions and 
operations automatically over multiple dimensions is 
known as Intelligent Arrays™. This feature makes it 
vastly easier to create and modify multidimensional 
models, and to avoid making mistakes. It allows the 
modeler and the tool both to work at the level of tables 
rather than cells, a more natural and appropriate a level 
of abstraction. 

8. No treatment of uncertainty 
When working with numbers, we know when we think 
about it that almost all numbers are uncertain. Some, 
like the speed of light, are accurate to one part in 1012. 
But, most quantities in practical business modeling or 
government policy are far less accurate. It is often 
helpful to represent those uncertainties explicitly as 
probability distributions, so that you can evaluate and 
manage the risks, and discover which sources of 
uncertainty are the most important.   

 

Figure 11: Example probability distributions on 
corresponding results. 

Common spreadsheet applications do not let you 
express probabilistic uncertainties directly, although 
there are spreadsheet add-ins that make this possible. 
Analytica offers probabilistic modeling of uncertainty as a 
built-in facility. Being fully integrated into the tool, the 
probabilistic analysis is much faster to compute and 
usable with minimal training. The uncertainty about any 
quantity may be expressed by a probability distribution – 
a standard distribution, such as a uniform, normal, or 
triangular – or as a custom distribution. To calculate a 
model probabilistically, it uses Monte Carlo simulation, or 
the more efficient Latin Hypercube simulation to 
generate a random sample from each distribution and 
propagate them through the model. The sample is 
treated simply as an additional dimension, and 
propagated with the same Intelligent Array features just 
discussed. Analytica automatically estimates the 
probability distributions on results and can display them 

as probability ranges, density functions, or cumulative 
probability functions, as you prefer.   

 

Figure 12: If you select “All” as an option for an input 
variable, in this case Price, the model performs a 

parametric analysis to display the effects of changing the 
values on the results of interest, as shown in Figure 13. 

 

Figure 13: Parametric analysis showing how the net 
present value of the new product varies with pricing and 

marketing budget. 
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9. Minimal support for sensitivity analysis 
Often the most potent source of insights from modeling 
arises from sensitivity analysis, to help figure which 
inputs and assumptions have the most effect on the 
results, and why. Sensitivity analysis includes simple 
what-if analysis to see how a change to one input affects 
the results, scenario analysis to examine the effects of 
combinations of input values, parametric analysis to 
graph how changing one or more inputs across several 
values affects the results (see ), and importance analysis 
to identify the relative effect of the uncertainties about 
the various input assumptions (see Figure 14).  

It is, of course, easy to do single cell what-if analysis 
with a spreadsheet. You just change an input and look at 
the change in the result — provided you can remember 
or record its previous value. Excel also provides 
powerful tools for scenario analysis, allowing you to 
define and compare the results of scenarios. Parametric 
analysis is a little harder but can be achieved by 
judicious definition of scenarios.  

Importance analysis requires explicit representation of 
uncertainty. You will need a proprietary add-in for the 
spreadsheet. Analytica provides these kinds of 
sensitivity analysis as basic functions. You can easily 
provide any input with a list of alternative values. By 
default, the input node will show a pulldown list which 
includes “All”. (See figures 12 and 13.) Selecting “All” for 
one or more inputs automatically generating a one or 
more-way parametric analysis over those variables. 

 

Figure 14: Importance analysis, showing the relative 
importance (rank order correlation of Monte Carlo 

samples) of the uncertain inputs on the uncertainty in the 
resulting NPV. It suggests that reducing uncertainty 
about market size is much more important than price 

elasticity.  

 

10. No separation between end-user interface 
and model details 
Frequently-used spreadsheets in an organization are 
usually built by one person and used by many others. A 
good spreadsheet builder knows to separate the inputs 
and outputs of interest to the users in one worksheet, as 
the user interface or “dashboard” – from the other 
internal components segregated into other worksheets. 
Ideally, the builder identifies the input cells clearly by 
color or shading, and locks all the other cells to prevent 
accidental or deliberate tampering with other parts of the 
model not designed for changing by end users. 
However, audits of operational spreadsheets find that 
builders often fail to maintain this clear separation and 
locking. Unfortunately, spreadsheet applications provide 
them little assistance in doing so.  

 

Figure 15: An example end user interface for the Market 
model. It arranges three groups of inputs and one group 
of outputs (Results). “Model details” in the module at the 

bottom are available for review but not to change.  

Analytica provides a special class of module, a form, 
designed to provide the human interface for end users. 
Drawing an influence arrow from a form module to a 
variable automatically creates a corresponding input 
node in the form, displayed as an input field, pull-down 
menu, or edit table, according to the type and 
dimensions of the variable. Drawing an arrow from a 
variable to a form creates a corresponding output, 
displayed as a number or button opening up to display a 
table or graph.  The input and output nodes are aliases 
to the original variables, allowing the original variables to 
remain in their functional positions in their original 
modules, but with links set in the form.See Figure 15 for 
an example. 

In a spreadsheet, the modeler who wants to preserve 
the logical structure of the internal worksheets would 
need to make cells or tables that copy from inputs or to 
outputs. In Browse mode, Analytica lets the user change 
only designated inputs, and prevents direct changes to 
any other part of the model. The Analytica Player offers 
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only Browse Mode. The Enterprise version allows any 
model to be locked in Browse mode, no matter which 
version of Analytica the end user has.  

Analytica’s Intelligent Arrays offers an extra flexibility for 
end users. If an Index variable, such as Years, is made 
available as an Input, the user may modify the 
corresponding dimension. Any input table indexed by 
Years will then automatically expand or contract 
accordingly. In Spreadsheets, the only practical 
approach is to create all tables with enough rows and 
columns to handle the largest possible application – 
most inefficient when most end users need many fewer. 
Allowing end users to add dimensions to tables is quite 
impractical – something which is quite easy in 
Analytica’s methods for “parametric analysis” 

User-interface metaphors and levels of 
representation 
Like any user-oriented software, the usability of 
spreadsheets lives or dies by its user-interface 
metaphors. The spreadsheet grid as a user-interface 
metaphor — so well-adapted for accounting — is poorly 
suited for more sophisticated modeling. The limitations 
of the grid metaphor are, I believe, a major cause of the 
high frequency of errors in spreadsheets. It makes errors 
easy to make and hard to detect. It requires massive 
redundancy in the representation of relationships 
between tables. It does little to encourage structured 
documentation and modular organization. Worst of all, it 
does not represent high-level knowledge about a model: 
It does not match the way an expert analyst thinks about 
the problem. Spreadsheets are therefore unable to 
assist the user in creating and testing a model at the 
appropriate level of representation.  

We can summarize the deficiencies of spreadsheets by 
saying that they work at too low a level of representation. 
The grid deals with cells. The modeler is – or should be 
– thinking about higher level entities, such as variables, 
influences, modules, hierarchies, dimensions and arrays, 
uncertainties, and sensitivities. A modeling tool that 
displays these entities and lets the user interact with 
them directly feels much more intuitive and empowering 
to a modeler.  It reduces the need for mental translation 
between the representations used by the modeler and 
by the software. It makes it much to write, review, verify, 
explain, and extend models.  It reduces the number of 
errors by preventing many kinds of errors from being 
made in the first place, and by making remaining errors 
easier to detect and fix.  

Building and analyzing business models and other kinds 
of quantitative models is primarily about improving your 
qualitative understanding of the problem leading to 
better decisions. This understanding involves identifying 
what decision options or strategies are worth looking at, 
what the objectives are, which issues and uncertainties 
might have the largest effects on the results, and the 

reasons or conditions to prefer one decision over 
another.  It is usually a social process that involves 
several people developing an improved shared 
understanding. For all these reasons, an effective model 
is one that improves communication. Representations 
like influence diagrams provide an excellent way for 
people to discuss and explain the qualitative structure of 
a model. High quality documentation is essential if 
people are to understand the assumptions of a model. 
Sensitivity and uncertainty analysis helps answer 
questions about what factors are important to the 
recommendations and why.  

For coherence and consistency, the diagrams and 
documentation should be completely integrated into the 
quantitative aspects of the model, rather than, as they 
often are, entirely separate documents, in different 
applications — say Powerpoint, Word, and Excel. In 
principle, such documents can be linked together using 
OLE, but these links cannot easily maintain consistency 
of structure between representations. 

Why do we need a different application to 
fix spreadsheets? 
The deficiencies of spreadsheets are scarcely a negative 
reflection on their developers. Spreadsheet developers, 
notably of Microsoft Excel, seem to be aware of many of 
these problems, and they have made heroic efforts to 
address some of them — including named cells and 
ranges, the audit tool, the outliner, cell locking, data 
validation, pivot tables, among others. The problem is 
that it is very difficult to retrofit the original spreadsheet 
paradigm with the needed higher levels of 
representation. It is hard to make these features 
integrate well with each other while being completely 
backward compatible. For example, Excel lets you 
choose the text to the right of a cell, or row, as its name, 
but it does not remember the connection when you 
update the text cell. Even if you change the name of a 
cell, it does not update the formulas that use that name. 
If you add columns or rows adjacent to a named range, it 
does not extend the range. It would be very hard to 
provide automatic propagation of changes to table 
dimensions in a spreadsheet. Because the tables are 
embedded in the grid, it would require automatic 
insertion or deletion of rows or columns in the grid, which 
might break other parts of the model using the same 
rows or columns but not indexed by those dimensions. 

It was much easier for the author and his team to design 
Analytica as a modeling tool without having to worry 
about backward compatibility (although, the first version, 
known as Demos, was in fact designed around the same 
time as the first spreadsheet in 1979).  

By designing the features as a coherent whole, we were 
able to obtain great synergies among them. For 
example, since variables can represent arrays, an 
influence diagram can represent a large 
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multidimensional model with relatively few variables. If 
you needed a separate variable for each cell, the 
diagrams and influence arrows, would be overwhelming 
and incomprehensible – imagine using Excel’s audit tool 
to display arrows for the dependencies among all the 
cells in a spreadsheet. Hierarchical modules allow 
organization of much more complex models into a set of 
comprehensible diagrams. Automatic propagation of 
changes to indexes and addition of dimensions works 
well in Analytica, but would be problematic if the tables 
of varying sizes were embedded in a fixed spreadsheet 
grid. 

Analytica is not the only modeling tool to offer any of the 
features that fix the listed deficiencies in spreadsheets. 
There are decision analysis tools that provide influence 
diagrams (if not hierarchical modules). There are 
spreadsheet add-ins that support treatment of 
uncertainty with Monte Carlo simulation. And there are 
OLAP tools that provide versions of array abstraction. 
However, Analytica is the only tool we know of that 
provides all these three key elements as an integrated 
whole, and can therefore benefit from the considerable 
synergies among them. 
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